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Abstract. Navy watchstanding operations increasingly involve information-
saturated environments in which operators must attend to more than one critical 
task display at a time [1]. In response, the Navy is pursuing a model-based 
understanding of human performance in multitask settings. Empirical studies 
with a complex dual task and related cognitive modeling work in the authors’ 
lab suggest that auditory cueing is an effective strategy for mediating operators’ 
attention [2,3,4]. Characterizing the effects of widely separated displays on 
performance and effort is an important ancillary concern, and a series of 
cognitive models developed with the EPIC cognitive architecture [5] is used for 
this purpose. These cognitive models verify a key finding from an empirical 
study; namely, time spent on the primary, relatively stateless, tracking task is 
regulated by state information retained from the secondary, radar task. These 
findings suggest that in multitask settings, operators use relatively simple state 
information about a task they are about to leave to gauge how long they can 
attend to other matters before they must return. 
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1   Introduction 

Auditory display research at the Naval Research Laboratory (NRL) is motivated 
primarily by the U.S. Navy’s need to improve efficiency in the Combat Information 
Center aboard ships, reducing required manpower. Research at NRL has shown that 
the use of auditory cueing can dramatically improve operator performance in 
information-saturated environments [2,3,4]. In order to better exploit the benefits of 
auditory cueing for the purpose of attention management, a good understanding of the 
underlying mechanisms driving attention switching in both cued and uncued settings 
is needed. This paper furthers the understanding of these mechanisms by presenting 
cognitive models of a method utilizing situational awareness to trigger attention 
switches in environments with and without external prompting, and evaluating these 
models using head-tracking data collected in a human subjects study. 



2   Background 

The Dual Task. The dual task environment that provides the foundation for the 
models explored in this paper was developed at NRL in the early 1990s [6]. This dual 
task consists of a tracking task, in which subjects are asked to follow the movements 
of a target object on the primary display with a joystick, and a radar task, in which 
subjects make a series of rule-based classifications of objects that appear on a 
secondary screen. 

The tracking task is a continuous task where performance is directly related to 
attention. Movement of the target is slow enough that subjects are capable of tracking 
well when attending to the task, but rapid enough that performance falls off abruptly 
when the subjects attend to the radar task.  

The radar task is a more complex episodic task, requiring subjects to respond to 
individual classification events (sixty-five events over a thirteen minute scenario). 
Objects of three different types, referred to collectively as blips, appear near the top of 
the screen and travel towards the bottom of the screen over the course of about twenty 
seconds. Based on the speed and trajectory of these blips, subjects are asked to 
classify them as either hostile or neutral according to separate rules for each of the 
three blip types. Subjects are not permitted to enter their response until blips are 
approximately halfway down the screen at which point a blip will change color (and 
in some conditions an auditory alert will be presented), signifying that a response is 
needed. Blips may turn red, indicating that they are hostile; blue, indicating neutrality; 
or yellow, in which case subjects must rely on the rules alone to determine threat 
level. 

In the Dual Task configuration addressed by this modeling effort, the two tasks 
were presented to subjects on different monitors separated by a ninety-degree arc. 
Two features of this setup are of critical importance. First, the separation angle is 
wide enough that subjects attending to one task do not have visual information from 
the other task available in their peripheral vision. Second, the cost for switching 
between tasks is significantly higher than it would be if the two tasks were on the 
same screen. Thus, rapid interleaving of the two tasks is not as feasible as in many 
other modeled multitasking environments. 

 
EPIC. The EPIC cognitive architecture [5] has been used to build several models of 
this dual task in the past [3,7,8]. The models in this paper are an extension of previous 
modeling work at NRL, and again use the EPIC architecture. These models also make 
use of a custom-designed encoder for the hostility property of blips on the radar 
screen, and a timing mechanism that regulates the amount of time spent on the 
tracking task between attendances to the radar task. 
 
Human Data. The design of this model relies on data collected in a human subjects 
study conducted at NRL [4]. Subjects wore a head-tracking device mounted on top of 
a set of headphones while performing the dual task in four conditions: one with no 
auditory cues to aid in their task, and three conditions that varied the type of sounds 
presented and the manner in which they were presented to subjects. This head 
tracking data allowed for analyses concerning the number of attention switches, 



response times to auditory cues, and the amount of time spent on any given instance 
of the tracking or radar tasks. A key finding from this study, shown in Figure 1, was 
the negative correlation between the time spent on the tracking task and the number of 
blips onscreen when subjects turned from the radar task to the tracking task. This 
correlation implies that subjects incorporate state information from the radar in their 
strategies for managing time spent on the tracking task. 
 

 
Fig. 1. Emprical data from [4]. The number of blips onscreen when a subject leaves the radar 
task to attend to the tracking task has a strong impact on the amount of time spent tracking 
before returning to the radar task. Error bars show the standard error of the mean (s.e.m.). 

Upon completion of the four conditions, subjects were presented with a simpler 
version of the radar task. Blips were presented one at a time, and subjects were 
permitted to respond at any time; they did not wait for blips to become active. Each 
subject responded to 72 blips with auditory cues and 72 blips without auditory cues. 
This task provided a measure of classification and response times for situations in 
which no distractions were present. 

3   Modeling 

Base Model. All models were run under two conditions: one that made use of 
auditory cues to signify when a blip on the radar task became active, and one that 
used no auditory cues. Each of the models was run using four thirteen-minute 
scenario files that were used to drive the radar task in the human subjects study. A 
timing mechanism developed by Taatgen [9], and implemented in EPIC by Hornof [8] 
was used to determine the amount of time spent on the tracking task between episodes 
of executing the radar task. This timer adds a certain level of non-determinism to the 
model, so each condition-scenario pair was run ten times, and all recorded measures 
are averages of those model runs.   

Two elements of note in the base model’s strategy were influenced by information 
collected in the human subjects study. First, the classification of blips on the radar 
screen begins before they have become active. During the dual task, subjects spent 
less time on the radar screen after a blip had become active than it took them to 
classify a blip in the simpler single-blip task performed at the end of the experiment. 
This suggests that subjects began the classification process prior to a blip becoming 
active. Second, the model classifies blips in stages, with classification taking place 
over multiple attendances to the radar task. The duration of subjects’ attendances to 
the radar task rarely exceeded 1500ms. Because blip classification and response were 
determined to take longer than this, it was concluded that subjects must classify blips 
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over multiple attendances to the radar task. A custom encoder created in EPIC ensures 
that the model attends to blips for a 1000ms period, followed by a separate 565ms 
inspection period before the hostility of a blip is available to the model. 

 
Modeling Urgency. When subjects looked away from the radar task to attend to the 
tracking task, the amount of time spent on tracking was inversely proportional to the 
number of blips on the radar screen. This is likely due to a sense of urgency that 
increased with the amount of activity on the radar task. We hypothesized that subjects 
used state information from the radar task to facilitate intelligently-timed attention 
switches, allowing subjects to spend more time on tracking when the radar task did 
not require attention, and to return to the radar task in a timely fashion when blips 
required a response. Such a strategy should improve performance in both tasks. 

In order to test this hypothesis, our models were run in each of three modes. All 
models used the strategies described above in the Base Model section. The first 
model, referred to as mono-urgency, would spend approximately 2700ms on the 
tracking task each time it attended to it, regardless of the number of blips on the radar 
task. The dual-urgency model used two different durations on the tracking task: 
approximately 2450ms when there was a blip on the radar task, and 5915ms when 
there were no blips on the radar screen. A third, multi-urgency model made use of 
5915ms, 2980ms, 2450ms, and 2000ms durations for tracking sessions beginning with 
zero, one, two, or at least three blips onscreen, respectively. All of these durations 
were based on data observed in the human subject study. In the sound condition, 
models used the same numbers to guide their tracking durations, except that if the 
model had already classified all blips on the radar task, it would wait for an auditory 
cue signifying that a blip had become active to return to the radar task. 

 

 
 
Fig. 2. Reaction times (left) and the number of attention switches (right) decreased as the model 
used more state information from the radar task.  Note that error bars, which show the s.e.m., 
are present for the various models’ measures.  The variance is too small to see at this scale. 

4   Results and Conclusion 

Model performance was evaluated on reaction times in the radar task, the percentage 
of time spent on the tracking task and the number of attention switches between the 
two tasks. The models’ reaction times in the radar task decreased as more information 
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from the radar task was used to regulate time spent on the tracking task, as shown in 
Figure 2. In the no-sound condition, the models’ mean reaction times were 3156ms, 
2972ms and 2852ms for mono-, dual- and multi-urgency models respectively. In the 
sound condition, reaction times were 3016ms, 2833ms and 2738ms. The percentage 
of time spent on the tracking task remained relatively even, with mono-, dual- and 
multi-urgency models spending 64.9, 64.9, and 65.1 percent of their time on tracking 
in the no-sound condition, and 66.0, 66.3 and 66.0 percent of their time on tracking in 
the sound conditions. The number of attention switches decreased in the dual- and 
multi-urgency models, with 282, 273.2 and 282.4 attention switches in the no-sound 
condition and 284.4, 276.8 and 280.4 attention switches in the sound condition for 
mono-, dual- and multi-urgency models, respectively.  

The human performance data suggests that subjects employ a strategy utilizing 
state information from the radar task to govern time spent on the tracking task, and 
data from the models suggests that this type of strategy can indeed be beneficial to the 
radar task without negatively affecting performance in the tracking task.  However, 
the models fail to sufficiently capture the performance differences found in the sound 
and no-sound conditions, and further work must be done to ensure that a strategy 
utilizing state information from the radar task can be effectively applied in models 
that are more faithful to human performance in both of these conditions.  
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